Friday, 1 December 2017

مؤثرة - متوسط - قيم التفوق


المتوسط ​​المتحرك يعلمك هذا المثال كيفية حساب المتوسط ​​المتحرك لسلسلة زمنية في إكسيل. ويستخدم المتوسط ​​المتحرك للتخلص من المخالفات (قمم ووديان) للتعرف بسهولة على الاتجاهات. 1. أولا، دعونا نلقي نظرة على السلاسل الزمنية لدينا. 2. من علامة التبويب بيانات، انقر فوق تحليل البيانات. ملاحظة: لا يمكن العثور على زر تحليل البيانات انقر هنا لتحميل الوظيفة الإضافية تولباس تولباك. .3 حدد متوسط ​​النقل وانقر فوق موافق. .4 انقر في مربع نطاق الإدخال وحدد النطاق B2: M2. 5. انقر في المربع الفاصل الزمني واكتب 6. 6. انقر في المربع نطاق الإخراج وحدد الخلية B3. 8. رسم رسم بياني لهذه القيم. إكسلاناتيون: لأننا نقوم بضبط الفاصل الزمني الى 6، المتوسط ​​المتحرك هو متوسط ​​نقاط البيانات الخمس السابقة ونقطة البيانات الحالية. ونتيجة لذلك، يتم تمهيد قمم والوديان. يظهر الرسم البياني اتجاها متزايدا. لا يستطيع إكسيل حساب المتوسط ​​المتحرك لنقاط البيانات الخمس الأولى لأنه لا توجد نقاط بيانات سابقة كافية. 9. كرر الخطوات من 2 إلى 8 للفاصل الزمني 2 والفاصل الزمني 4. الخاتمة: كلما زاد الفاصل الزمني، كلما تم تمهيد القمم والوديان. كلما كان الفاصل الزمني أصغر، كلما كانت المتوسطات المتحركة أقرب إلى نقاط البيانات الفعلية. متوسط ​​متوسط ​​التنبؤ بالتنبؤ. كما قد تخمن أننا نبحث في بعض من أكثر الأساليب بدائية للتنبؤ. ولكن نأمل أن تكون هذه مقدمة مفيدة على الأقل لبعض قضايا الحوسبة المتعلقة بتنفيذ التنبؤات في جداول البيانات. في هذا السياق سوف نستمر من خلال البدء في البداية والبدء في العمل مع توقعات المتوسط ​​المتحرك. نقل متوسط ​​التوقعات. الجميع على دراية بتحرك توقعات المتوسط ​​بغض النظر عما إذا كانوا يعتقدون أنهم. جميع طلاب الجامعات القيام بها في كل وقت. فكر في درجاتك االختبارية في الدورة التي ستحصل فيها على أربعة اختبارات خالل الفصل الدراسي. لنفترض أنك حصلت على 85 في الاختبار الأول. ما الذي يمكن أن تتنبأ به لنتيجة الاختبار الثانية ما رأيك بأن معلمك سوف يتنبأ بنتيجة الاختبار التالية ما رأيك في أن أصدقائك قد يتنبأون بنتيجة الاختبار التالية ما رأيك في توقع والديك لنتيجة الاختبار التالية بغض النظر عن كل بلابينغ كنت قد تفعل لأصدقائك وأولياء الأمور، هم ومعلمك من المرجح جدا أن نتوقع منك الحصول على شيء في مجال 85 كنت حصلت للتو. حسنا، الآن دعونا نفترض أنه على الرغم من الترويج الذاتي الخاص بك إلى أصدقائك، وكنت أكثر من تقدير نفسك والشكل يمكنك دراسة أقل للاختبار الثاني وحتى تحصل على 73. الآن ما هي جميع المعنيين وغير مدرك الذهاب إلى توقع أن تحصل على الاختبار الثالث هناك اثنين من المرجح جدا النهج بالنسبة لهم لوضع تقدير بغض النظر عما إذا كانوا سوف تقاسمها معك. قد يقولون لأنفسهم، هذا الرجل هو دائما تهب الدخان حول ذكائه. هيس الذهاب للحصول على آخر 73 إذا هيس محظوظا. ربما كان الوالدان يحاولان أن يكونا أكثر داعما ويقولان: كوتيل، حتى الآن حصلت على 85 و 73، لذلك ربما يجب أن تحصل على حوالي (85 73) 2 79. أنا لا أعرف، ربما لو كنت أقل من الحفلات و ويرنت يهتز في كل مكان في العالم، وإذا كنت بدأت تفعل الكثير من الدراسة يمكن أن تحصل على أعلى score. quot كل من هذه التقديرات تتحرك في الواقع متوسط ​​التوقعات. الأول يستخدم فقط أحدث درجاتك للتنبؤ بأدائك المستقبلي. وهذا ما يطلق عليه توقعات المتوسط ​​المتحرك باستخدام فترة واحدة من البيانات. والثاني هو أيضا متوسط ​​التوقعات المتحركة ولكن باستخدام فترتين من البيانات. دعونا نفترض أن كل هؤلاء الناس خرق على العقل العظيم لديك نوع من سكران قبالة لكم وتقرر أن تفعل بشكل جيد على الاختبار الثالث لأسباب خاصة بك ووضع درجة أعلى أمام كوتاليسكوت الخاص بك. كنت تأخذ الاختبار ودرجاتك هو في الواقع 89 الجميع، بما في ذلك نفسك، وأعجب. حتى الآن لديك الاختبار النهائي للفصل الدراسي القادمة وكالمعتاد كنت تشعر بالحاجة إلى غواد الجميع في جعل توقعاتهم حول كيف ستفعل على الاختبار الأخير. حسنا، نأمل أن ترى هذا النمط. الآن، ونأمل أن تتمكن من رؤية هذا النمط. ما الذي تعتقده هو صافرة الأكثر دقة بينما نعمل. الآن نعود إلى شركة التنظيف الجديدة التي بدأتها شقيقة نصف استدارة دعا صافرة بينما نعمل. لديك بعض بيانات المبيعات السابقة التي يمثلها القسم التالي من جدول بيانات. نعرض البيانات لأول مرة لتوقعات المتوسط ​​المتحرك لمدة ثلاث سنوات. يجب أن يكون إدخال الخلية C6 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C7 إلى C11. لاحظ كيف يتحرك المتوسط ​​على أحدث البيانات التاريخية ولكنه يستخدم بالضبط ثلاث فترات أحدث متاحة لكل تنبؤ. يجب أن تلاحظ أيضا أننا لسنا بحاجة حقا لجعل التنبؤات للفترات الماضية من أجل تطوير أحدث توقعاتنا. وهذا يختلف بالتأكيد عن نموذج التجانس الأسي. وشملت إيف التنبؤات كوتاباستكوت لأننا سوف استخدامها في صفحة الويب التالية لقياس صحة التنبؤ. الآن أريد أن أعرض النتائج المماثلة لمتوسطين توقعات المتوسط ​​المتحرك. يجب أن يكون إدخال الخلية C5 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C6 إلى C11. لاحظ كيف الآن فقط اثنين من أحدث القطع من البيانات التاريخية تستخدم لكل التنبؤ. مرة أخرى لقد قمت بتضمين التنبؤات اقتباسا لأغراض التوضيح واستخدامها لاحقا في التحقق من صحة التوقعات. بعض الأمور الأخرى التي من الأهمية أن تلاحظ. وبالنسبة للمتوسط ​​المتحرك للمتوسط ​​m، لا يتوقع إلا أن تستخدم معظم قيم البيانات الأخيرة في التنبؤ. لا شيء آخر ضروري. وبالنسبة للتنبؤ المتوسط ​​المتحرك للمتوسط ​​m، عند التنبؤ بالتنبؤات، لاحظ أن التنبؤ الأول يحدث في الفترة m 1. وستكون هاتان المسألتان مهمتين جدا عند تطوير الشفرة. تطوير المتوسط ​​المتحرك المتحرك. الآن نحن بحاجة إلى تطوير رمز لتوقعات المتوسط ​​المتحرك التي يمكن استخدامها أكثر مرونة. تتبع التعليمات البرمجية. لاحظ أن المدخلات هي لعدد الفترات التي تريد استخدامها في التوقعات ومصفوفة القيم التاريخية. يمكنك تخزينه في أي المصنف الذي تريده. وظيفة موفينغافيراج (تاريخي، نومبروفريودس) كما واحد إعلان وتهيئة المتغيرات ديم البند كما متغير عداد خافت كما عدد صحيح تراكم خافت كما أحادي ديم تاريخي الحجم كما عدد صحيح تهيئة المتغيرات عداد 1 تراكم 0 تحديد حجم الصفيف التاريخي تاريخ سيز التاريخية. الكونت كونتر 1 إلى نومبروفريودس تجميع العدد المناسب من أحدث القيم التي تمت ملاحظتها سابقا تراكم تراكم تاريخي (تاريخي - عدد نومبريوفريودس عداد) موفينغافيراج تراكوم نومبروفريودس سيتم شرح التعليمات البرمجية في الصف. تريد وضع الدالة على جدول البيانات بحيث تظهر نتيجة الحساب حيث تريد أن يتضمن التالي. DAX بعض وظائف التجميع الإحصائية، مثل المتوسط ​​والتباين والانحراف المعياري. الحسابات الإحصائية النموذجية الأخرى تتطلب منك كتابة تعبيرات داكس أطول. إكسل، من وجهة النظر هذه، لديها لغة أكثر ثراء بكثير. الأنماط الإحصائية هي عبارة عن مجموعة من الحسابات الإحصائية المشتركة: الوسيط، المتوسط، المتوسط ​​المتحرك، النسبة المئوية، والربع. نود أن نشكر كولن بانفيلد، جيرارد بروكل، وخافيير غيلن، التي بلهمت بعض بلوق الأنماط التالية. مثال النمط الأساسي الصيغ في هذا النمط هي الحلول لحسابات إحصائية محددة. يمكنك استخدام وظائف داكس القياسية لحساب متوسط ​​(متوسط ​​حسابي) لمجموعة من القيم. معدل . بإرجاع متوسط ​​كل الأرقام في عمود رقمي. أفيراجيا. بإرجاع متوسط ​​كل الأرقام في عمود، مع التعامل مع كل من القيم النصية وغير الرقمية (القيم النصية غير الرقمية والفاخرة عد 0). أفيراجيكس. حساب متوسط ​​على تعبير تقييمها على جدول. المتوسط ​​المتحرك المتوسط ​​المتحرك هو حساب لتحليل نقاط البيانات من خلال إنشاء سلسلة من المتوسطات لمجموعات فرعية مختلفة من مجموعة البيانات الكاملة. يمكنك استخدام العديد من تقنيات داكس لتنفيذ هذا الحساب. أبسط تقنية تستخدم أفيراجيكس، وتكرار جدول من التفاصيل المطلوبة وحساب لكل تكرار التعبير الذي يولد نقطة بيانات واحدة لاستخدامها في المتوسط. على سبيل المثال، تحسب الصيغة التالية المتوسط ​​المتحرك لآخر 7 أيام، على افتراض أنك تستخدم جدول تاريخ في نموذج البيانات. باستخدام أفيراجيكس، يمكنك تلقائيا حساب التدبير في كل مستوى تحبب. عند استخدام مقياس يمكن تجميعها (مثل سوم)، ثم نهج آخر يعتمد على كالكولاتيماي يكون أسرع. يمكنك العثور على هذا النهج البديل في نمط كامل من المتوسط ​​المتحرك. يمكنك استخدام الدالات داكس القياسية لحساب تباين مجموعة من القيم. VAR. S. ترجع تباين القيم في عمود يمثل عينة نموذجية. VAR. P. ترجع تباين القيم في عمود يمثل مجموع السكان. VARX. S. ترجع تباين تعبير يتم تقييمه عبر جدول يمثل عينة نموذجية. VARX. P. ترجع تباين تعبير يتم تقييمه عبر جدول يمثل مجموع السكان. الانحراف المعياري يمكنك استخدام وظائف داكس القياسية لحساب الانحراف المعياري لمجموعة من القيم. STDEV. S. ترجع الانحراف المعياري للقيم في عمود يمثل عينة نموذجية. STDEV. P. ترجع الانحراف المعياري للقيم في عمود يمثل مجموع السكان. STDEVX. S. ترجع الانحراف المعياري للتعبير الذي تم تقييمه عبر جدول يمثل عينة نموذجية. STDEVX. P. ترجع الانحراف المعياري للتعبير الذي تم تقييمه عبر جدول يمثل مجموع السكان. والمتوسط ​​هو القيمة العددية التي تفصل النصف الأعلى من السكان عن النصف السفلي. إذا كان هناك عدد فردي من الصفوف، الوسيط هو القيمة الوسطى (فرز الصفوف من أدنى قيمة إلى أعلى قيمة). إذا كان هناك عدد من الصفوف، فهو متوسط ​​القيمتين المتوسطتين. وتتجاهل الصيغة القيم الفارغة التي لا تعتبر جزءا من السكان. والنتيجة متطابقة مع وظيفة ميديان في إكسيل. ويبين الشكل 1 مقارنة بين النتيجة التي تم إرجاعها بواسطة إكسيل وصيغة داكس المقابلة لحساب الوسط. الشكل 1 مثال لحساب متوسط ​​في إكسيل و داكس. الوضع هو القيمة التي تظهر في معظم الأحيان في مجموعة من البيانات. وتتجاهل الصيغة القيم الفارغة التي لا تعتبر جزءا من السكان. وتكون النتيجة متطابقة مع الدالة مود و MODE. SNGL في إكسيل، التي تعيد فقط القيمة الدنيا عندما تكون هناك أوضاع متعددة في مجموعة القيم التي تم النظر فيها. ستقوم الدالة إكسيل MODE. MULT بإرجاع كافة الأوضاع، ولكن لا يمكنك تنفيذها كمقياس في داكس. يقارن الشكل 2 النتيجة التي تم إرجاعها بواسطة إكسيل مع صيغة داكس المقابلة لحساب الوضع. الشكل 2 مثال على حساب الوضع في إكسيل و داكس. النسبة المئوية النسبة المئوية هي القيمة التي تقل عنها نسبة معينة من القيم في المجموعة. وتتجاهل الصيغة القيم الفارغة التي لا تعتبر جزءا من السكان. يتطلب الحساب في داكس عدة خطوات، الموضحة في المقطع "نمط كامل"، الذي يظهر كيفية الحصول على نفس نتائج دالات إكسيل بيرسنتيل و PERCENTILE. INC و PERCENTILE. EXC. أما الرباعيات فهي ثلاث نقاط تقسم مجموعة من القيم إلى أربع مجموعات متساوية، تتألف كل مجموعة منها من ربع البيانات. يمكنك حساب القطاعات الرباعية باستخدام النمط المئوي، بعد هذه المراسلات: الربع الأول الربع السفلي الربع الخامس والعشرين المئوي الثاني الربع المتوسط ​​50th النسبة المئوية الربع الثالث الربع العلوي الربع الخامس 75 المئوي النمط الكامل بعض الحسابات الإحصائية لها وصف أطول للنمط الكامل، لأن قد يكون لديك تطبيقات مختلفة اعتمادا على نماذج البيانات وغيرها من المتطلبات. المتوسط ​​المتحرك عادة ما تقيم المتوسط ​​المتحرك عن طريق الرجوع إلى مستوى التفصيل اليومي. النموذج العام للصيغة التالية له هذه العلامات: لنتومبيروفايسغت هو عدد الأيام للمتوسط ​​المتحرك. لتاتيكولومنغت هو عمود التاريخ لجدول التاريخ إذا كان لديك عمود واحد أو عمود التاريخ الذي يحتوي على قيم إذا لم يكن هناك جدول تاريخ منفصل. لتماسوريجت هو مقياس لحساب كمتوسط ​​متحرك. أبسط نمط يستخدم الدالة أفيراجيكس في داكس، والتي تأخذ في الاعتبار فقط الأيام التي توجد قيمة لها. كبديل، يمكنك استخدام القالب التالي في نماذج البيانات بدون جدول زمني ومع مقياس يمكن تجميعه (مثل سوم) على مدار الفترة التي تم النظر فيها. تعتبر الصيغة السابقة يوم مع عدم وجود بيانات المقابلة كمقياس 0 قيمة. يمكن أن يحدث هذا فقط عندما يكون لديك جدول تاريخ منفصل، والذي قد يحتوي على أيام لا توجد معاملات مقابلة لها. يمكنك إصلاح القاسم للمتوسط ​​باستخدام عدد الأيام التي توجد فيها معاملات باستخدام النمط التالي حيث: لاتفاكتليغت هو الجدول المتعلق بجدول التاريخ ويحتوي على قيم محسوبة بواسطة المقياس. قد تستخدم الدالات داتسبيتوين أو داتيسينبيريود بدلا من فيلتر ولكن هذه تعمل فقط في جدول تاريخ عادي، بينما يمكنك تطبيق النمط الموضحة أعلاه أيضا إلى جداول التاريخ غير العادية والنماذج التي ليس لها جدول تاريخ. على سبيل المثال، النظر في النتائج المختلفة التي تنتجها التدابير التالية اثنين. في الشكل 3، يمكنك أن ترى أنه لا توجد مبيعات في 11 سبتمبر 2005. ومع ذلك، يتم تضمين هذا التاريخ في الجدول التاريخ وبالتالي، هناك 7 أيام (من 11 سبتمبر إلى 17 سبتمبر) التي لديها 6 أيام فقط مع البيانات. الشكل 3 مثال على حساب متوسط ​​متحرك مع مراعاة وتجاهل التواريخ بدون مبيعات. قياس المتوسط ​​المتحرك 7 أيام لديه عدد أقل بين 11 سبتمبر و 17 سبتمبر، لأنه يعتبر 11 سبتمبر يوما مع 0 المبيعات. إذا كنت ترغب في تجاهل أيام مع عدم وجود مبيعات، ثم استخدام مقياس المتوسط ​​المتحرك 7 أيام لا صفر. قد يكون هذا هو النهج الصحيح عندما يكون لديك جدول تاريخ كامل ولكنك تريد تجاهل الأيام بدون معاملات. باستخدام صيغة المتوسط ​​المتحرك 7 أيام، تكون النتيجة صحيحة لأن أفيراجيكس تأخذ في الاعتبار القيم غير الفارغة تلقائيا. ضع في اعتبارك أنك قد تحسن أداء المتوسط ​​المتحرك من خلال الاستمرار في القيمة في عمود محسوب من جدول يحتوي على التفاصيل المطلوبة، مثل التاريخ أو التاريخ والمنتج. ومع ذلك، فإن نهج الحساب الديناميكي مع مقياس يوفر القدرة على استخدام معلمة لعدد أيام المتوسط ​​المتحرك (على سبيل المثال استبدال لتنومبروفيدسغت مع مقياس تنفيذ نمط الجدول معلمات). الوسيط يتطابق مع النسبة المئوية 50، والتي يمكنك حسابها باستخدام نمط النسبة المئوية. ومع ذلك، فإن نمط المتوسط ​​يسمح لك لتحسين وتبسيط الحساب الوسيط باستخدام مقياس واحد، بدلا من عدة تدابير المطلوبة من قبل نمط النسبة المئوية. يمكنك استخدام هذا النهج عند حساب الوسيط للقيم المضمنة في لتفالويكولومنغت كما هو موضح أدناه: لتحسين الأداء، قد تحتاج إلى استمرار قيمة مقياس في عمود محسوب، إذا كنت ترغب في الحصول على الوسيط لنتائج وهو مقياس في نموذج البيانات. ومع ذلك، قبل القيام بهذا التحسين، يجب تنفيذ حساب ميديانكس استنادا إلى القالب التالي، باستخدام هذه العلامات: لترانولاريتيتليغت هو الجدول الذي يحدد دقة الحساب. على سبيل المثال، يمكن أن يكون جدول التاريخ إذا كنت تريد حساب متوسط ​​مقياس محسوب على مستوى اليوم، أو يمكن أن تكون قيم (8216DateYearMonth) إذا كنت تريد حساب متوسط ​​مقياس محسوب على مستوى الشهر. لتماسوريجت هو مقياس لحساب لكل صف من لترانولاريتيتابلغت لحساب المتوسط. لتماسوريتابليغت هو الجدول الذي يحتوي على البيانات المستخدمة من قبل لتماسوريغت. على سبيل المثال، إذا كان لترانولاريتيبتليغت بعدا مثل 8216Date8217، ثم لتماسوريتابليغت سيكون 8216Internet Sales8217 التي تحتوي على العمود مبلغ المبيعات الإنترنت لخصها الإنترنت إجمالي قياس المبيعات. على سبيل المثال، يمكنك كتابة متوسط ​​إجمالي مبيعات الإنترنت لجميع العملاء في أدفنتور وركس على النحو التالي: تلميح النموذج التالي: يستخدم لإزالة الصفوف من لترانولاريتيتابليغت التي لا توجد بيانات المقابلة في الاختيار الحالي. وهي طريقة أسرع من استخدام التعبير التالي: ومع ذلك، يمكنك استبدال التعبير كالكولاتيتابل كامل مع لترانولاريتيتليغت فقط إذا كنت تريد أن تنظر القيم فارغة من لتماسوريغت كما 0. يعتمد أداء صيغة ميديانكس على عدد الصفوف في الجدول تكرارا وعلى تعقيد التدبير. إذا كان الأداء سيئا، قد تستمر نتيجة لتماسوريجت في عمود محسوبة من لتابليغت، ولكن هذا سوف يزيل قدرة تطبيق عوامل التصفية على حساب الوسيط في وقت الاستعلام. النسبة المئوية لبرنامج إكسيل له تطبيقان مختلفان لحساب المئين مع ثلاث وظائف: بيرسنتيل و PERCENTILE. INC و PERCENTILE. EXC. أنها جميعا ترجع النسبة المئوية K - ث من القيم، حيث K في نطاق 0-1. الفرق هو أن بيرسنتيل و PERCENTILE. INC النظر K كمجموعة شاملة، في حين يعتبر PERCENTILE. EXC مجموعة K 0-1 باعتبارها حصرية . وتتلقى كل هذه الوظائف وتطبيقات داكس قيمة مئوية كمعلمة، والتي نسميها قيمة K. لكغت المئوية في المدى من 0 إلى 1. يتطلب تطبيقا داكس للمئين عددا قليلا من التدابير المتشابهة، ولكن مختلفة بما فيه الكفاية لتتطلب اثنين من مجموعة مختلفة من الصيغ. التدابير المحددة في كل نمط هي: كبيرك. القيمة المئویة التي تتطابق مع ال لكت. بيركبوس. موقف النسبة المئوية في مجموعة من القيم التي تم فرزها. فالو. القيمة أقل من النسبة المئوية. فالهيهي. القيمة فوق الموضع المئوي. النسبة المئوية. الحساب النهائي للمئوية. تحتاج إلى فالو و فالوهيغ التدابير في حالة بيركبوس يحتوي على جزء عشري، لأنه ثم عليك أن إنتيربولات بين فالو و فالوهيغ من أجل إعادة القيمة المئوية الصحيحة. ويبين الشكل 4 مثالا على الحسابات التي أجريت مع صيغ إكسيل و داكس، باستخدام كل من خوارزميات المئين (شاملة وحصرية). الشكل 4 الحسابات المئوية باستخدام صيغ إكسيل وحساب داكس المعادل. في المقاطع التالية، يتم تنفيذ الصيغ بيرسنتيل الحساب على القيم المخزنة في عمود جدول داتافالو، في حين أن الصيغ بيرسنتيلكس تنفذ الحساب على القيم التي يتم إرجاعها بواسطة مقياس محسوب في دقة معينة. النسبة المئوية الشاملة إن التنفيذ الشامل الشامل هو التالي. النسبة المئوية الحصرية التنفيذ الحصري المئوي هو التالي. بيرسنتيلكس شامل يستند التطبيق بيرسنتيلكس الشامل على القالب التالي، وذلك باستخدام هذه العلامات: لترانولاريتيتليغت هو الجدول الذي يحدد دقة الحساب. على سبيل المثال، يمكن أن يكون جدول التاريخ إذا كنت ترغب في حساب النسبة المئوية لمقياس على مستوى اليوم، أو يمكن أن تكون قيم (8216DateYearMonth) إذا كنت ترغب في حساب النسبة المئوية لمقياس على مستوى الشهر. لتماسوريجت هو مقياس لحساب لكل صف من لترانولاريتيتليغت لحساب المئوية. لتماسوريتابليغت هو الجدول الذي يحتوي على البيانات المستخدمة من قبل لتماسوريغت. على سبيل المثال، إذا كان لترانولاريتيتليغت بعدا مثل 8216Date، 8217 ثم لمياسوريتابليجت سيكون 8216Sales8217 التي تحتوي على عمود المبلغ التي تم جمعها من قبل قياس المبلغ الإجمالي. على سبيل المثال، يمكنك كتابة بيرسنتيليكسينك من إجمالي المبلغ المبيعات لجميع التواريخ في الجدول التاريخ كما يلي: بيرسنتيلكس إكسلوسيف يستند إكسلوسيف إكسلوسيف التنفيذ على القالب التالي باستخدام نفس العلامات المستخدمة في بيرسنتيلكس شاملة: على سبيل المثال، أنت يمكن كتابة بيرسنتيلكسكسك من إجمالي كمية المبيعات لجميع التواريخ في الجدول التاريخ على النحو التالي: إبقائي على علم أنماط القادمة (النشرة الإخبارية). قم بإلغاء التحديد لتنزيل الملف بحرية. نشرت يوم 17 مارس 2014 من قبل

No comments:

Post a Comment